skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roghanchi, Sepideh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deterministic multithreading (DMT) fundamentally requires total, deterministic ordering of synchronization operations on each synchronization variable, i.e. a partial ordering over all synchronization operations. In practice, prior DMT systems totally order all synchronization operations, regardless of synchronization variable; the result is severe performance degradation for highly concurrent applications using fine-grained synchronization. Motivated by this class of programs, we propose lazy determinism as a way to go beyond this total order bottleneck. Lazy determinism executes synchronization operations speculatively, and enforces determinism by subsequently validating the resulting order of operations. If an ordering violation is detected, part of the computation is restarted. By enforcing only the partial ordering required to guarantee determinism, lazy determinism increases the available parallelism during deterministic execution. We implement LazyDet via a pure-software runtime system accelerated by custom Linux kernel support. Our experiments with hash table benchmarks from Synchrobench show roughly an order of magnitude improvement in the performance of lock-based data structures compared to the state of the art in eager determinism. For benchmarks from PARSEC-2, SPLASH-2, and Phoenix, we demonstrate runtime improvements of up to 2× on the programs that challenge deterministic execution environments the most. 
    more » « less